APEX 2011 Workshop

Ring Transfer and Coupling Matrix at IP

Steve Tepikian, Vadim Ptitsyn December 8-9, 2011

Ring Transfer and Coupling Matrix

- Description of the method
- Simulation results
- First attempts
- Conclusions

Description of Method

Extending the method of measuring β^* by varying the two quadrupoles about the IP.

The ring transfer matrix:

$$T = T_E T_R T_B = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

T can be described with 10 parameters: $[\mu_x, \alpha_x, \beta_x, \mu_y, \alpha_y, \beta_y, a, b, c, d]$

[A] Vary a quadrupole in
$$T_B$$
: $T_\Delta = T_E T_R T_{B+\Delta} = T_E T_R T_B (T_B^{-1} T_{B+\Delta}) = T (T_B^{-1} T_{B+\Delta})$

[B] Vary a quadrupole in
$$T_E$$
: $T_\Delta = T_{E+\Delta}T_RT_B = (T_{E+\Delta}T_E^{-1})T_ET_RT_B = (T_{E+\Delta}T_E^{-1})T_ET_RT_B$

Description of Method, cont...

The eigen-tunes from the transfer matrix:

$$Q_{\pm} = Tune_{\pm}(\boldsymbol{T}) = \frac{1}{2\pi} \arccos\left(\frac{1}{2} (Tr(\boldsymbol{A}) + Tr(\boldsymbol{D})\right) \pm \sqrt{\frac{1}{4} (Tr(\boldsymbol{A}) - Tr(\boldsymbol{D}))^2 + det(\boldsymbol{\overline{B}} + \boldsymbol{C})}\right)$$

The ΔQ_{min} from the transfer matrix:

$$\Delta Q_{\min} = DtuneMin(T) = \frac{\sqrt{det(\overline{B} + C)}}{\pi \left[\sin(2\pi Q_{+}) + \sin(2\pi Q_{-})\right]}$$

Minimum case using 4 quadrupoles – 15 equations with 10 unknowns:

$$\begin{split} \mu_{_{X}} = 2\,\pi\,Q_{_{+}} & \mu_{_{Y}} = 2\,\pi\,Q_{_{-}} & \Delta\,Q_{_{min}} = DtuneMin\left(\boldsymbol{T}\right) & \mu_{_{X}} > \mu_{_{Y}} \\ Q_{_{\pm}}^{(1)} = Tune_{_{\pm}}\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{1}}}}\right) & \Delta\,Q_{_{min}}^{(1)} = DtuneMin\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{1}}}}\right) & Q_{_{\pm}}^{(2)} = Tune_{_{\pm}}\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{2}}}}\right) & \Delta\,Q_{_{min}}^{(2)} = DtuneMin\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{2}}}}\right) \\ Q_{_{\pm}}^{(3)} = Tune_{_{\pm}}\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{2}}}}\right) & \Delta\,Q_{_{min}}^{(3)} = DtuneMin\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{2}}}}\right) & Q_{_{\pm}}^{(4)} = Tune_{_{\pm}}\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{2}}}}\right) & \Delta\,Q_{_{min}}^{(4)} = DtuneMin\left(\boldsymbol{T}_{_{\boldsymbol{\Delta}_{_{2}}}}\right) \end{split}$$

Simulations

IBS-suppression optics with rolls in the triplets

APEX: Dec 8-9, 2011

Model	ALFX	BETX	ALFY	BETY		
Case #1	-0.1883	0.7655	0.8647	0.6219		
Case #2	-0.2964	1.2880	0.4687	1.2437		

	Quadrupole Errors				Case #1			Case #2				
Row	Q2I	Q1I	Q10	Q20	ALFX	BETX	ALFY	BETY	ALFX	BETX	ALFY	BETY
0	0%	0%	0%	0%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
1	-1%	0%	0%	0%	1.17%	0.02%	6.42%	5.20%	2.09%	0.30%	1.88%	0.69%
2	1%	0%	0%	0%	1.20%	0.02%	6.24%	5.44%	2.12%	0.29%	1.93%	0.72%
3	0%	-1%	0%	0%	2.25%	0.11%	6.64%	5.37%	1.35%	0.17%	2.37%	0.84%
4	0%	1%	0%	0%	2.21%	0.11%	6.41%	5.59%	1.36%	0.16%	2.39%	0.88%
5	0%	0%	-1%	0%	4.91%	0.45%	7.72%	7.04%	2.43%	0.35%	2.71%	1.10%
6	0%	0%	1%	0%	5.29%	0.46%	8.56%	7.11%	2.45%	0.37%	2.84%	1.11%
7	0%	0%	0%	-1%	2.78%	0.31%	6.59%	5.97%	3.12%	0.43%	2.14%	0.87%
8	0%	0%	0%	1%	2.97%	0.32%	7.23%	6.05%	3.10%	0.46%	2.24%	0.87%

RHIC

First Attempts

IP6

Vertical tune was noisier and less reproducible than horizontal tune.

Automated BTF measurements were on.

Conclusions

- Proposed a method to measure the 4x4 transfer matrix including coupling
 - At a minimum, vary 4 quadrupoles
 - Must include rolled/skewed quadrupoles
 - In practice it is better to use 6 quadrupoles
 - May have more than one solution
 - Accurate modeling of the T_B and T_E beam lines are necessary
- Works in simulation
- Needs to show it works on a real machine

Backup Slides

IP8 Data

IP8

Vertical tune was noisier and less reproducible than horizontal tune.

Yellow Inner triplet (yi7) rolls were not measured.

Transfer Matrix

$$\boldsymbol{M}_{x|y} = \begin{bmatrix} \cos(\mu_{x|y}) + \alpha_{x|y} \sin(\mu_{x|y}) & \beta_{x|y} \sin(\mu_{x|y}) \\ -\frac{1 + \alpha_{x|y}^2}{\beta_{x|y}} \sin(\mu_{x|y}) & \cos(\mu_{x|y}) - \alpha_{x|y} \sin(\mu_{x|y}) \end{bmatrix}$$

$$U = \begin{bmatrix} M_x & 0 \\ 0 & M_y \end{bmatrix}$$

$$\mu_{x|y} = 2\pi Q_{x|y}$$

Transfer Matrix cont...

$$G = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \bar{G} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad H = \frac{1}{\sqrt{1 + det(G)}} \begin{bmatrix} I & \bar{G} \\ -G & I \end{bmatrix} \quad H^{-1} = \frac{1}{\sqrt{1 + det(G)}} \begin{bmatrix} I & -\bar{G} \\ G & I \end{bmatrix}$$

$$T = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = HUH^{-1} = H\begin{bmatrix} M_x & 0 \\ 0 & M_y \end{bmatrix} H^{-1}$$

$$A = \frac{1}{1 + det(G)} (M_x + \overline{G}M_y G) \qquad B = \frac{1}{1 + det(G)} (\overline{G}M_y - M_x \overline{G})$$

$$C = \frac{1}{1 + det(G)} (M_y G - GM_x) \qquad D = \frac{1}{1 + det(G)} (M_y + GM_x \overline{G})$$

$$C = \frac{1}{1 + det(G)} (M_y G - G M_x) \qquad D = \frac{1}{1 + det(G)} (M_y + G M_x \overline{G})$$

